python - Reshaping numpy array without using two for loops -


i have 2 numpy arrays

import numpy np x = np.linspace(1e10, 1e12, num=50) # 50 values y = np.linspace(1e5, 1e7, num=50)   # 50 values x.shape # output (50,) y.shape # output (50,) 

i create function returns array shaped (50,50) such first x value x0 evaluated y values, etc.

the current function using complicated, let's use easier example. let's function is

def func(x,y):     return x**2 + y**2 

how shape (50,50) array? @ moment, output 50 values. use loop inside array?

something like:

np.array([[func(x,y) in x] j in y) 

but without using 2 loops. takes forever run.


edit: has been requested share "complicated" function. here goes:

there data vector 1d numpy array of 4000 measurements. there "normalized_matrix", shaped (4000,4000)---it nothing special, matrix entry values of integers between 0 , 1, e.g. 0.5567878. these 2 "given" inputs.

my function returns matrix multiplication product of transpose(datavector) * matrix * datavector, single value.

now, can see in code, have initialized 2 arrays, x , y, pass through series of "x parameters" , "y parameters". is, func(x,y) return value x1 , value y1, i.e. func(x1,y1)?

the shape of matrix1 (50, 4000, 4000). shape of matrix2 (50, 4000, 4000). ditto total_matrix.

normalized_matrix shape (4000,4000) , id_mat shaped (4000,4000).

normalized_matrix print normalized_matrix.shape #output (4000,4000)  data_vector = datarr print datarr.shape #output (4000,)  def func(x, y):     matrix1 = x [:, none, none] * normalized_matrix[none, :, :]     matrix2 = y[:, none, none] * id_mat[none, :, :]     total_matrix = matrix1 + matrix2     # transpose(datavector) * matrix * datavector     # matrix multiplication, equals single value     return  np.array([ np.dot(datarr.t,  np.dot(total_matrix, datarr) )  ]) 

if try use np.meshgrid(), is, if try

x = np.linspace(1e10, 1e12, num=50) # 50 values y = np.linspace(1e5, 1e7, num=50)   # 50 values  x, y = np.meshgrid(x,y)  z = func(x, y) 

i following value error: valueerror: operands not broadcast shapes (50,1,1,50) (1,4000,4000).

reshape in numpy different meaning. when start (100,) , change (5,20) or (10,10) 2d arrays, 'reshape. there anumpy` function that.

you want take 2 1d array, , use generate 2d array function. taking outer product of 2, passing combinations of values through function.

some sort of double loop 1 way of doing this, whether explicit loop, or list comprehension. speeding depends on function.

for @ x**2+y**2 example, can 'vectorized' quite easily:

in [40]: x=np.linspace(1e10,1e12,num=10) in [45]: y=np.linspace(1e5,1e7,num=5) in [46]: z = x[:,none]**2 + y[none,:]**2 in [47]: z.shape out[47]: (10, 5) 

this takes advantage of numpy broadcasting. none, x reshaped (10,1) , y (1,5), , + takes outer sum.

x,y=np.meshgrid(x,y,indexing='ij') produces 2 (10,5) arrays can used same way. @ doc other parameters.

so if more complex function can written in way takes 2d arrays this, easy 'vectorize'.

but if function must take 2 scalars, , return scalar, stuck sort of double loop.

a list comprehension form of double loop is:

np.array([[x1**2+y1**2 y1 in y] x1 in x]) 

another is:

z=np.empty((10,5)) in range(10):    j in range(5):       z[i,j] = x[i]**2 + y[j]**2 

this double loop can sped using np.vectorize. takes user defined function, , returns 1 can take broadcastable arrays:

in [65]: vprod=np.vectorize(lambda x,y: x**2+y**2)  in [66]: vprod(x[:,none],y[none,:]).shape out[66]: (10, 5) 

test i've done in past show vectorize can improve on list comprehension route 20%, improvement nothing writing function work 2d arrays in first place.

by way, sort of 'vectorization' question has been asked many times on numpy. beyond these broad examples, can't without knowning more more complicated function. long black box takes scalars, best can np.vectorize. , still need understand broadcasting (with or without meshgrid help).


Comments

Popular posts from this blog

python - No exponential form of the z-axis in matplotlib-3D-plots -

php - Best Light server (Linux + Web server + Database) for Raspberry Pi -

c# - "Newtonsoft.Json.JsonSerializationException unable to find constructor to use for types" error when deserializing class -